Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

نویسندگان

  • Sunao Mizumura
  • Shin-ichiro Kumita
  • Keiichi Cho
  • Makiko Ishihara
  • Hidenobu Nakajo
  • Masahiro Toba
  • Tatsuo Kumazaki
چکیده

Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

Diagnosis of brain tumor using PNN neural networks

Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of nuclear medicine

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2003